

Passive Face Recognition For Immigration Exit

Satisfying System-Level Constraints

IBPC 2016, NIST May 5, 2016

Patrick Grother
National Institute of Standards and Technology

Biometric Exit: Constraints on Solutions

Technical	Organizational

- » Accuracy (FRR, FTE)
- » Capture, transaction time
- » Network transmission time
- » Backend processing time

- > Impact on carrier IT
- » Impact on carrier staff
- » Impact on boarding
- » Impact on travelers
 - In-scope
 - Out-of-scope

DHS + Policy

- Entry requirements
- Collection and recognition on US Citizens + ex-scope travelers
- » Capital cost
- » Transactional cost
- » Specifying requirements is difficult
- » Procurement risk

Influential variables

- » Modality selection
- » Number of fingers, eyes, images
- » Sensor, matcher selection
- » Human factors design
- » Real time response + recapture

Influential variables

- » Boarding pass modification
- » Interfaces, common use
- Boarding process
- » Physical space

Influential variables

- > 1:1 with token, or 1:N without
- » Modality already available from visa or Entry record?

Passive Face Collection + Matching Case Study 1 of 2: Self-boarding Gate

Passive face collection requires no traveler interaction with airline systems:

- No delays over existing process
- No (explicit) connection between airline + DHS systems
- Traveler paused to look at instructional monitor
- Passive face collection using webcam

Self-Boarding Gate: Face capture is passive, without cooperation or awareness of traveler

Conclusions: No-Delay Face at Self-Boarding Gate

Performance results

» High level of accuracy achievable, highly dependent on placement of camera and attractor

- » Low transaction times, minimal if any impact to current boarding times
- » Video frames verified against prior visa or Entry image

Caveats + comparison to other CONOPs

- » Video data is larger than fingerprints, iris
 - Payload = 5.4MB (mean per person)
 - Finger = 10KB, Slap = 120KB
 - Iris = 30KB
- » Face recognition algorithm selection is critical
 - Degradation from 1st to 2nd best
- Dependent on high quality enrollment sample from Entry, visa or passport image

Passive Face Collection + Matching

Case Study 2 of 2: Passenger Loading Bridge

Passive face collection requires no explicit traveler interaction with airline systems:

- No delays over existing process
- No connection between airline and DHS systems
- Interaction with DHS face cameras is non-cooperative

Passenger Loading Bridge: Surveillance mode capture

Passenger loading bridge: Example frames from video

Video vs. Frontal Stills

Population ~ 40

Duration ~ 15 mins, single clip

Pitch ~ 15° at 2 meters. Peak IOD ~ 70

pix.

Passenger loading bridge: Accuracy and computation speed

Performance results

- » Exit confirmation impeded by:
 - Lack of visual attractor
 - Webcam enrollment images
 - Duration in view
 - Hats, cellphones
 - Weak matching algorithms
- Significant CPU processing time per person, amplified if PLB line is stalled
- » Video stream size is 4GB for time it takes to board 350 person aircraft.

Caveats + comparison to other CONOPs

- » Accuracy below
 - The 97% congressional requirement
 - That from single finger, iris, or passive face at self-boarding gate
- » Biometric recognition processing duration is x100 slower
 - Template generation slow
 - 1:N comparison time is negligible
- » Video payloads are larger than other biometrics. Per person:
 - 1500 times larger than single finger
 - 100 times larger than slap fingers

The AEER Team: Funding from DHS S&T

Science and Technology

DHS	NIST	Scitor (SAIC)
Arun Vemury	Patrick Grother	Yevgeniy Sirotin
Bob Middleton	James Matey	Jake Hasselgren
	Mei Ngan	John Howard
		Tom Runyon
		Chuck Ryn
		Jerry Tipton

Thank You

patrick.grother@nist.gov

The research for this presentation was funded by the Department of Homeland Security Science and Technology Directorate.